주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



문제에서 "걸쳐 있다" 는 표현을 두 물체가 움직이지 않고 있다는 의미로 이해하도록 하겠습니다.


줄과 도르레의 질량은 0 이라고 가정하겠습니다.  θ


마찰력은 없다고 가정하겠습니다. 마찰계수를 주지 않았기 때문입니다.


4-1


( a )


각각의 물체에 작용하는 수직항력의 크기는 물체끼리 이어주는 장력의 크기와는 관계가 없습니다. 단지 중력의 영향만을 받습니다.


그러므로 각각의 장력의 크기는 다음과 같습니다.


식 1.


( b )

두 물체에 작용하는 알짜힘( 경사면에 대한 중력의 수평방향 성분 )은 다음과 같습니다.


식 2.


물체가 움직이고 있지 않기 때문에, 각 줄의 끝에 작용하는 장력은 반대쪽에 있는 물체의 알짜힘과 같습니다. 그러므로 다음과 같은 관계를 가집니다.


식 3.



( c )


줄의 양 끝에 작용하는 장력의 크기가 동일할 때 물체가 멈춰있게 됩니다. 그래서 다음과 같은 식이 성립합니다.


식 4.


4-2


( a )



그림을 그려서 삼각형을 구성하는 요소들의 길이를 구하려다가 보니 그냥 답이 나와 버리네요. 길이를 어느쪽으로 잡느냐에 따라서 결과는 달라집니다.


그림 1.


삼각형의 꼭지점에서 수선을 내려서 수선의 길이를 구하다가 보면 그림 1 과 같은 결과를 얻습니다.


식 4 에 대입해 보면 질량비는 다음과 같습니다.


식 5.


해답에서는 그냥 3 / 5 이라고 표현합니다.


( b )


각각의 구슬의 질량을 m 이라 하면 각 구슬에 작용하는 알짜힘은 경사면에 따라 다음과 같습니다.


식 6.


그리고 구슬이 총 개수를 N 이라고 하고, 3 미터 경사면의 구슬 개수를 a 라고 하고 5 미터 경사면의 구슬 개수를 b 라고 합시다. 또한 각 경사면에 존재하는 구슬의 질량의 합을 M1 과 M2 라 합시다. 


그러면 식 5 처럼 열심히 풀면 결국엔 다음과 같은 결과가 나옵니다.



식 7.


해답에서는 그냥 A : B = 5 : 3 이라고 표현합니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



질량 30 kg 인 사람이 질량 60 kg 인 사람을 마찰력 없는 얼음 위에서 60 N 으로 당기는 상황에서 운동 방정식을 써 보면 다음과 같습니다. 딱히 언급한게 없으므로 밧줄의 질량은 0 이라고 가정합니다.


밧줄의 양쪽 끝에 걸리는 장력은 동일하게 60 N 입니다.



그러므로 다음과 같은 운동방정식을 세울 수 있습니다.




주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



종단속도는 다음과 같이 정의됩니다.



즉 b 와 g 는 상수이므로, m 에 비례합니다. 그러므로 10 kg 인 아이와 60 kg 인 어른의 종단속도는 6 배 차이가 납니다. 

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.




속도가 일정하다는 것은 알짜힘이 0 이라는 의미가 됩니다. 다음과 같은 관계가 성립합니다.


식 1.


F = ma 로 정의되기 때문에 식 1 은 다음과 같이 쓸 수 있습니다.


식 2.


이제 모르는 변수들을 제거해 봅시다.


속도가 일정하다고 했기 때문에 여기에서 ||v|| = ||v0|| 입니다. 그러므로 마찰력 상수 b 는 다음과 같습니다.


식 3.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.





( a )

N 은 경사면을 누르는 중력 성분 중에서 경사면에 대한 수직성분인 -N 에 대한 반작용으로 발생하므로, mg 를 -N사영한 벡터의 길이와 같습니다.


식 1.


( b )


임계각을 넘어 가면 아래로 미끄러지므로, 임계각에서 최대 정지 마찰력이 작용함을 알 수 있습니다. 그러므로 ||F|| = ||f|| 여야만 합니다.


일단 F 는 중력의 경사면에 대한 수평성분이므로 그 크기는 mgF 에 사영한 벡터의 길이와 같습니다.


식 2.


그리고 f = μN 이므로 ||f|| 는 다음과 같습니다.



식 3.


||F|| = ||f|| 로부터 다음을 구할 수 있습니다.


식 4.


( c )


식 4 를 통해 μ 는 다음과 같이 구해집니다.


식 5.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



비행기 질량 : m

추친력 : F0

이륙 속도 : v0


가속도를 a 라 할 때, 뉴턴 운동 2 법칙에 의해 가속도는 다음과 같이 구할 수 있습니다.


식 1.


시간 x 에서의 속도 함수는 v( x ) = ax 입니다. 별다른 조건이 없으니 등가속도 운동을 한다고 가정합니다.


이것을 부정적분해서 원함수 V( x ) 를 구하도록 하겠습니다.


식 2.


이제 원함수를 구했으니, 속도 함수를 정적분해 이동거리를 구합니다. t 는 이륙 속도가 되는 시간을 의미합니다.


식 3.


하지만, 여기에 우리가 알지 못하는 변수 a 와 t 가 들어 가 있습니다. 


사실 우리는 t 값을 알고 있습니다. 왜냐하면 v( t ) 는 이륙속도인 v0 이기 때문입니다.


식 4.


그리고 식 1 에 의해서 우리는 a 값도 알고 있습니다. 그러므로 이를 대입하면 다음과 같습니다.


식 5.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



평면에서 마찰력은 수직항력에 비례하게 됩니다. 운동 마찰계수를 μ 라 하고 수직항력을 N 이라 할 때 마찰력 f 는 다음과 같이 정의됩니다.



그러므로 질량 100 kg 인 물체에 대해서 10m/s2 의 중력가속도가 적용될 때의 수직항력은 중력의 크기와 같습니다. 



일단 문제에서는 등속도 운동을 한다고 가정했으므로 Ff 는 동일하다고 할 수 있습니다. 가속도가 0 이므로 힘의 합력이 0 인 것이죠. 


그러므로 마찰계수는 다음과 같이 계산됩니다.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

주의 : 특별한 경우가 아니라면, 귀찮아서 문제는 안 옮깁니다.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



( a )


수직면과 경사면의 사이각을 θ 라고 합시다. 진행 방향은 중력 벡터로부터 θ 만큼 반시계방향으로 회전한 벡터입니다. 혹은 중력벡터는 진행방향으로부터 θ 만큼 시계방향으로 회전한 벡터입니다.


그림 1.


(+) 방향으로 작용하는 힘의 단위벡터를 F 라고 해 보죠. 그러면 합력은 mg + N = xF 입니다. 이는 mg 벡터를 F 벡터에 사영한 것과 같죠.


그림 2.


[ 내적 ] 을 이용하면 사영한 벡터의 길이를 알 수 있습니다.


그림 3.


이 경우 |A| = m|g| 이므로, 사영한 길이는 m|g|cosθ 입니다.


이를 어떤 벡터가  θ 만큼 회전했을 때의 위치를 구하는 매개변수 공식( parametric equation )으로부터 구할 수도 있습니다.


그림 4.


r = m|g| 이므로 사영한 길이는 m|g|cosθ 입니다.


그런데 문제에서는 sin 을 사용해서 답을 구하라고 되어 있군요. 이 경우에는 바닥과 경사면 사이를 θ 라 정의하고 계산해야 합니다. 원래 우리가 θ 로 잡았던 곳이 90 - θ 가 됩니다.


그림 5.


r = m|g| 이므로 사영한 길이는 m|g|cos( 90 - θ ) 입니다.


[ 삼각함수 ] 에 의하면 cos( 90 - θ ) = sinθ 이므로, 사영한 길이는 m|g|sinθ 입니다.


( b )

( a ) 를 통해 우리는 F 의 길이가 m|g|sinθ 라는 것을 알게 되었습니다. 즉 F = mg + N = m|g|sinθ 라는 의미입니다.


뉴턴의 운동 2 법칙에서는 F = ma 라 정의하고 있기 때문에, F = ma = m|g|sinθ 이고, 이로부터 a = |g|sinθ 임을 알 수 있습니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



이때 줄의 장력의 세기는 얼마인가?


그림 1.



우리는 F1 이 m1g 이고 F2 가 m2g 라는 사실을 알고 있습니다. 그리고 줄과 도르레의 질량이 0 이므로 줄의 양끝에서는 동일한 장력이 작용합니다. 


그러므로 두 물체의 가속도는 동일하며, 각각은 다음과 같이 표시할 수 있습니다.


식 1.


식 1 로부터 가속도를 구할 수 있습니다.


식 2.


식 2 의 가속도를 다시 식 1 의 첫 번째 식에 할당합니다.


식 3.


저는 책에서와는 반대로 첫 번째 물체를 중심으로 T 를 구했습니다. 하지만 두 번째 물체를 중심으로 T 를 구해도 결과는 같습니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



이때 장력의 세기는 얼마인가?



이 문제는 마찰력도 없고 밧줄과 도르레의 질량이 0 이라고 가정합니다. 두 물체가 힘 F 에 의해서 끌려간다고 가정하면 다음과 같은 식을 세울 수 있습니다.


식 1.


일단 우리는 첫 번째 물체에 작용하는 장력을 알 수 있습니다.


식 2.


그런데 우리는 F = m2g 라는 사실을 알고 있습니다. 그러므로 식 1 은 다음과 같이 쓸 수 있죠.


식 3.


가속도 a식 2 에 할당하면, 장력 T 는 다음과 같습니다.


식 4.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



다음 물음들에 답하여라.


( a ) 밧줄의 장력 세기는 얼마인가?


( b ) 밧줄의 질량이 m0 로 무시할 수 없는 크기라면, 물체들의 가속도는 얼마인가?


( c ) 정확히 중간지점에서 밧줄의 장력 세기는 얼마인가? HINT : 밧줄을 두 개로 잘랐다고 가정하고, 두 개로 잘린 밧줄을 각각 다른 물체로 취급한다.


( d ) 질량이 M 인 물체를 질량이 m 인 밧줄에 연결하여 끌려고 한다. 밧줄을 끄는 힘의 세기를 F0 라 할 때, 물체에 연결된 밧줄 부분의 장력, 즉 물체에 작용하는 힘의 세기는 얼마인가?


문제는 다음과 같이 연결된 두 물체를 질량이 무시되는 밧줄로 연결해 일정한 힘 F0 로 끌고 가는 상황에 대해서 가정하고 있습니다( 책의 그림 4-7 ). T 는 두 물체간에 작용하는 장력입니다.



그리고 문제를 내기 바로 직전에 m2 를 질량이 없는 밧줄로 취급한다면 F0 = T 라는 것 까지 이야기한 상황입니다.


( a )


두 물체를 연결하는 밧줄의 장력을 T 라 하고 밧줄의 질량이 없다면, T = m1a 입니다.


( b )


밧줄의 질량이 m0 라고 하면 다음과 같은 식이 성립합니다.



여기에서 줄의 왼쪽 끝에 작용하는 장력은 m1a 이며, 줄의 오른쪽 끝에 작용하는 장력은 ( m0 + m1 )a 입니다.



( c )


밧줄이 중간으로 잘리면 왼쪽 밧줄의 질량은 m0/2 이고 오른쪽 밧줄의 질량은 m0/2 입니다. 그러므로 중간에 작용하는 장력은 ( m0/2 + m1 )a  입니다.


( d )


밧줄의 왼쪽 끝에서는 관성에 의해서 Ma 만큼의 반작용이 발생합니다. 그러므로 T = Ma 입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



지표면 위치에서 수직 방향으로 초속도 v0 로 던진 공이 있다.


( a ) 이 공이 최고 위치에 도달하는 데 걸리는 시간을 구하라. HINT : 속도가 0 이 되기까지의 시간이다.


( b ) 최고점 도달 높이를 구하라. HINT : 속도가 0 이 되는 시각의 높이이다.


( c ) 지표면에 다시 도달하는 시간을 구하라. HINT : 위치가 다시 0 이 되는 조건이다.


일단 속도와 위치를 구하는 함수를 만들어 보겠습니다.


초기 속도를 + 방향이라 하면 중력 가속도는 - 방향으로 작용합니다. 그러므로 F = -mg 가 중력입니다.


시간 t 에 중력방향으로 작용하는 속도는 gt 이므로 시간 x 일 때의 속도 함수 V(x) 는 다음과 같습니다.




[ 0, t ] 구간에서 이 속도함수를 정적분하면 위치 함수가 R(x) 가 됩니다.


( a )


공이 최고 위치에 도달하려면 속도가 0 이 되어야 합니다. 


속도가 0 이 된다는 것은 V(x) = 0 를 의미하므로, v0 = gx 여야 합니다.


즉 x = v0/g 에 속도가 0 이 됩니다.


( b )


최고점에 도달하는 높이는 속도가 0 이 되는 높이이므로, ( a ) 의 결과를 R(x) 에 대입하면 됩니다.



최고점에 도달하는 높이는 (v0)2/2g 입니다.


( c )


바닥에 떨어지는 시간은 위치가 0 이 되었을 때입니다. R(x) = 0 인 x 를 구하면 됩니다.



x = 0 은 공을 던진 시간이므로 땅에 떨어진 시간은 x = 2v0/g 일 때입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



가속되지 않고 단지 등속도로 끌려 올라가는 방이 있을 때, 이 방을 가로지르는 빛의 경로를 그려라. 빛의 경로는 기울어진 직선 모양인가? 곡선 모양인가?


등속도로 끌려 올라가면, 빛은 직진하는데 방이라는 계자체가 움직이고 있기 때문에, 빛은 상대적으로 아래로 기울어지는 것처럼 보입니다.



이 때 등속도이므로 직선운동을 합니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



질량이 60 kg 인 사람이 받는 무게, 즉 중력의 세기는 얼마인가?


F = ma 로부터 중력의 세기 F = mg 로 나타낼 수 있습니다. 지표면 근처에서 중력가속도 g = 9.8m/s2 이므로,



입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



더 작은 힘의 크기 단위인 다인dyne 은 1dyne = 1g*cm/s2 으로 정의한다. 1N 은 몇 다인에 해당되는가?


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



두 위치의 시계가 같은 시각을 나타내는지 확인하는 방법은 무엇인가? 예컨데, 서울과 부산의 시계를 맞추려면 어떻게 하면 될까?


지구는 둥글고 자전하기 때문에 고위도와 저위도의 순간속도에는 차이가 발생합니다. 일단 자전축을 중심으로 회전하니 방향은 동일하다고 가정합니다.



이걸 자전축을 중심으로 슬라이스를 만들어 봅시다. 단위 시간에 θ 만큼의 각도를 회전한다고 가정하면, 시간 t 동안 회전한 거리는 tθr 와 tθR 이 됩니다( θ 는 라디안 [radian] 단위입니다 ). 즉 서울의 자전속도 VS = θr 이고 부산의 자전속도 VP = θR 이라는 이야기입니다.



이제 서울과 부산에서 빛의 반사 실험을 한다고 가정해 봅시다. 고유시간을 T0 라고 할때 특수상대성 이론에 의한 시간은 다음과 같이 정의됩니다.


식 1.


우리는 서울과 부산이 자전하는 속도를 알고 있으므로 식 1 에 대입할 수 있습니다. 서울의 시간늘어남은 TS 이고 부산의 시간 늘어남은 TP 입니다.


식 2.


서울에서는 TS 비율로 부산에서 TP 비율로 시간이 흐르도록 제작된 시계를 사용하면 동일한 시간이 흐르게 됩니다.


그런데 시계는 그렇게 제작되기가 어렵습니다. 그래서 "두 위치의 시계를 어떻게 해야 맞출 수 있느냐"는 질문을 하는 거겠죠. 어차피 어디 답이 있는 것도 아니니 마음대로 해석하겠습니다.


같은 위치에 있는 공장에서 만들어진 시계가 특정 시간에 동기화되어 서울과 부산으로 이송되었다고 합시다. 그리고 t 만큼의 시간이 지났다고 가정해 봅시다. 


그러면 서울을 기준으로 했을 때 부산의 시계는 ( TP / TS ) * t 만큼의 시간이 될 때 시간을 t 로 맞춰야 합니다.



예를 들어 서울에서 12 시에 시간을 맞추자고 연락을 하면 부산에서는  ( TP / TS ) * 12 시가 되었을 때 12 시로 맞추면 됩니다.


그런데 두 시계가 다른 위치에서 제조되어 동기화된적도 없다고 하면 다음과 같은 과정을 거쳐야 합니다.

  • 먼저 특정 시점에 시간을 맞춥니다.
  • t 시간이 지난 후에 위의 식에 맞게 시간을 맞춥니다.


아는 분에게 이 답이 맞는 것 같냐고 질문을 하니 "특수상대성 이론 하에서의 논리라면 맞는 것 같은데, 회전이므로 가속도가 있는 운동이니 일반 상대성 이론이 적용되는 것이 맞지 않냐" 는 요지의 답변을 들었습니다.


특수 상대성 이론과 관련한 챕터라서 문제가 이상한 건지 제가 잘 이해를 못한 건지 헷갈리네요...

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



비행기가 V0 의 일정한 빠르기로 동쪽 방향으로 날아간다. 바람이 남쪽에서 북쪽으로 v0 의 빠르기로 분다면, 비행기 기수는 동쪽에서 몇 도만큼 남쪽으로 향해야 하는가?


항상 느끼는 거지만 문제를 참 이상하게 냅니다.


여기에서는 "비행기가 계속해서 동쪽방향으로 날아가려면 몇 도 만큼 남쪽으로 향해야 하는가?" 로 이해하고 풀겠습니다.


비행기가 동쪽으로 가지만 바람에 의해서 북쪽으로 밀려나기 때문에, 실제 진행 방향은 북동쪽이 됩니다.



그러므로 원래 진행방향인 동쪽으로 가려면 θ 만큼 남쪽으로 회전할 필요가 있습니다. 


문제에서는 빠르기라고 표현했으므로 V0 와 v0 를 스칼라 값이라로 볼 수 있습니다. 그러므로 삼각함수를 사용해 θ 을 구할 수 있습니다.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



그림은 어떤 단위 시간 간격으로 진자의 위치를 측정한 결과다. 이때 '위치 1' 과 '위치 4' 에서의 평균가속도 방향은 다음과 같은 순서로 운동을 분석하면 유추할 수 있다. 다음 각 단계의 물음에 답하라.


( a ) '위치 1' 에 도달하기 직전과 직후의 평균속도 벡터를 그림에 화살표로 나타내라.


( b ) ( a ) 에서 얻은 평균속도 벡터를 이용하여 '위치 1' 에서의 평균가속도 방향을 그림에 화살표로 나타내라.


( c )  '위치 4' 에 도달하기 직전과 직후의 평균속도 벡터 방향과 상대적 크기를 그림에 나타내라.


( d ) ( c ) 에서 얻은 평균속도 벡터를 이용하여 '위치 4' 에서의 평균가속도 방향을 그림에 화살표로 나타내라.


( e ) 같은 과정을 통해 '위치 3' 에서의 평균가속도 벡터 방향을 그림에 화살표로 나타내라.


단위 시간 간격으로 진자의 위치를 측정했다고 되어 있기 때문에 모든 구간에서 Δt = 1 이라고 가정하겠습니다. 


문제가 상당히 애매한 표현으로 이루어져 있는데요, 그냥 제 맘대로 해석해서 답을 구했습니다. 잘못된 답일 가능성이 상당히 높습니다.


( a )


'위치 1'  직전까지의 평균속도는 녹색이고, 직후의 평균속도는 파란색입니다.



( b )


추가 '위치 1' 에 도달하기 직전과 직후의 속도는 방향이 반대이고 크기가 같으므로 평균가속도는 0 입니다.



그런데 해답에서는 1 에서 3 으로 이어지는 벡터가 평균가속도라고 하고 있습니다. 최고점으로 올라가면서 감속을 하고 있으므로 그게 옳은 것 같습니다.


( c )


'위치 1' 에서 '위치 4' 방향으로 운동하고 있다면, '위치 4' 직전의 평균가속도는 녹색이고 '위치 4' 직후의 평균가속도는 파란색입니다.



( d )


'위치 4' 에서의 평균가속도는 붉은색입니다. 원래 4 의 위치에 그려야 하지만, 벡터이므로 어디에 그려도 상관없어서 그냥 그렸습니다.




( e )


'위치 4' 에서 '위치 3' 으로 운동하고 있다면 위치 '3' 의 평균 가속도는 붉은색입니다. 이 역시 벡터이므로 3 의 위치에다가 그리지 않고 그냥 그렸습니다.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.


 

시속 110 km 로 달리던 자동차의 브레이크를 밟으면 일정한 가속도로 50 m 를 이동한 후 정지한다고 한다.

 

( a ) 이때 가속도 크기는 얼마인가?

 

( b ) 멈추는데 걸리는 시간은 얼마인가?

 

( c ) 운전자가 브레이크를 밟기 시작하는 데 필요한 시간이 0.4 초라면, 자동차가 멈출 때까지는 얼마만큼의 거리를 이동하는가?

 

시간 구하는 것이 가장 일단 b 부터 풀어 보도록 하겠습니다.

( b )

 

초기속도 v0 인 자동차의 속도가 t0 부터 t1 까지 감속해 t1 에서 속도가 0 이 될 때까지의 그래프를 그리면 아래와 같습니다. 등가속도니 기울기는 a 인 직선 그래프가 됩니다.

 

 

등가속도 운동이므로 평균가속도와 순간가속도는 동일합니다. 그러므로 다음과 같이 식을 정리할 수 있습니다.

 

식 1.

 

이제 이동거리를 구해 봅시다. 위의 그림에서 삼각형의 면적이 이동거리입니다. 감속해서 정지할 때까지의 이동거리를 d 라 할때 식은 다음과 같습니다.

 

식 2.

 

우리는 초기속도와 이동거리를 알고 있습니다. 그래서 이를 대입하면 다음과 같습니다.

 

 

식 3.

 

( a )

 

속도와 시간을 알고 있으므로 식 1 에 대입해서 가속도를 구할 수 있습니다.

 

 

식 4.

 

해답에는 9.34 라고 나와 있네요. 어떤 계산이 잘못 되었는지 잘 모르겠군요(댓글에서 110 을 100 이라고 썼다고 알려 주셨네요).

 

( C )

 

이건 약간 함정문제 비슷한 것 같은데, 운전자가 브레이크를 밟는데 0.4 초가 걸렸다는 것은 가속도나 브레이크 밟고 있는 시간과 전혀 관계가 없습니다. 

 

그냥 v0 의 속도로 0.4 초를 진행하게 되는 겁니다. 이걸 50 m 에 더하면 됩니다.

 

식 5.

 

이 것도 해답은 62.2 입니다. 왜 차이가 나는지 모르겠습니다(댓글에서 110 을 100 이라고 썼다고 알려 주셨네요).

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



어떤 제트 여객기는 이륙하기 위해 300 km/h 의 빠르기가 필요하다고 한다. 활주로 길이가 2.0 km 라면 필요한 가속도의 크기는 몇 km/h2 인가?


문제에 어떠한 전제도 없기 때문에 정지상태에서 시작하는 등가속도 운동이라 가정합니다. 등가속도 운동에서는 평균가속도와 순간가속도가 동일합니다.


어떤 가속도 a 로 운동한다고 했을 때 속도는 다음과 같이 구할 수 있습니다.


식 1.


등가속도 운동에서 속도는 선형적으로 증가하는 직선 그래프입니다. 그리고 그 아래의 면적은 이동거리가 되죠. 


정지상태에서 출발했다고 했기 때문에 원점에서 시작하는 직선그래프입니다.



기울기가 a 인 직선 그래프이므로 식 1 에서 언급한 것처럼 시간 t 에서 v 는 at 입니다. 그러므로 이동거리( 면적 )은 다음과 같습니다.


식 2.


여기에서 우리가 t 를 모르기 때문에 이미 알고 있는 변수들을 대입해야 합니다. 식 1 에 의해 t = v/a 이고 식 2 에 다음과 같이 대입할 수 있습니다.


식 3.


식 3 에 우리가 알고 있는 거리와 속도를 대입합니다.



22500 km/h2 의 가속도를 제공해야 합니다.


너무 큰 값이라 잘못된게 아닌가 싶기도 한데...


어쨌든 이를 초당 가속도로 바꾸면 6.25 km/s2 이고, 이륙에 걸리는 시간은 48 초입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



방울뱀은 50 m/s2 의 가속도로 먹이를 공격할 수 있다고 한다. 정지상태에서 그런 가속도로 100 km/h 의 빠르기를 얻으려면 몇 초가 걸리는가?


문제에서 특별한 전제가 존재하지 않기 때문에 등가속도 운동이라고 가정합니다.


가속도라는 것은 속도의 변화량입니다. 뱀이 등가속도 운동을 한다고 가정하면, 평균가속도와 가속도는 동일합니다.


식 ( 1 ).


식 ( 1 ) 을 다음과 같이 정리할 수 있습니다.


식 ( 2 ).


정지상태에서 시작했다고 했으므로 v1 = 0 m/s 이고 t10 입니다. 그리고 a =  50 m/s2 입니다. 이를 식 ( 2 ) 에 대입하면 다음과 같습니다.


식( 3 ).


문제에서 100 km/h 의 빠르기에 도달한다고 했으니, 이를 초당 미터로 변경하면 27.8 m/s 가 됩니다. 이 속도를 식 ( 3 ) 에 대입하면 다음과 같습니다.



방울뱀은 0.556 초만에 100 km/h 에 도달할 수 있습니다. 

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



빠르기가 시속 20 km 인 두 기차가 마주 달리고 있다. 두 기차가 600 m 떨어진 상태에서, 새 한 마리가 한 기차를 출발하여 다른 쪽 기차까지 날아갔다가 되돌아 오는 운동을 계속한다고 한다. 새의 빠르기가 시속 30 km 라면 기차가 충돌할 때까지 새가 난 거리는 얼마인가?


일단 이 문제는 복잡하게 생각하면 안 됩니다. 그럼 꼬이죠. 결국 새가 날 수 있는 시간은 기차가 충돌할 때까지의 시간입니다.


그러므로 기차가 충돌하는 시간을 구하면 새의 속력을 알고 있으니 이동거리를 구할 수 있습니다.


기차를 A 와 B 라 합시다. A 의 속력을 va 라 하고 B 의 속력을 vb 라 합시다. 그러면 두 기차가 t 시간 동안에 이동한 거리는 각각 vat 와 vbt 입니다. 그 합이 600 m 가 될 때 기차는 충돌하며 이때의 t 의 값을 구할 수 있습니다.



이제 시간을 구했으니 새의 이동거리를 구할 수 있습니다.



주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



직선 위에서 운동하는 어떤 물체의 위치를 x( t ) = -4t + t2 으로 나타낼 수 있다고 한다. 여기에서 시간은 초( s ), 위치는 미터( m ) 단위다.


( a ) t = ( 2, 4 ) 초 구간과 t = ( 4, 6 ) 초 구간의 평균속도는 각각 얼마인가?


( b ) ( a ) 의 결과로부터 얻은 t = ( 2, 6 ) 초 구간의 평균가속도는 얼마인가?


( c ) t = ( 3, 4 ) 와 t = ( 4, 5 ) 초 구간의 평균속도는 각각 얼마인가?


( d ) ( c ) 의 결과로부터 얻은 t = ( 3, 5 ) 초 구간의 평균가속도는 얼마인가?


( a )


먼저 t 는 2, 4, 6 일 때의 위치를 구합니다.




이제 구간별로 평균속도를 구합니다. 평균속도는 다음과 같이 결정됩니다.



그러므로 구간별 평균속도는 다음과 같습니다.



( b )


평균가속도는 다음과 같이 결정됩니다.



그러므로 ( 2, 6 ) 구간의 속도차이를 먼저 구합니다.



이제 평균가속도를 구합니다.



정답에서는 +2 라는데 제가 뭘 잘못 이해하고 있는지 모르겠네요. 


-2 에서 시작해 속도가 초당 +1 씩 증가하면 4 초 뒤의 속도는 +2 가 되는 것으로 봤을 때 맞는 것 같은데 말이죠.


( C )


t 는 3, 5 일 때 이동거리를 구합니다.



그러므로 구간별 평균속도는 다음과 같습니다.



( d )

( 3, 5 ) 구간의 속도차이를 먼저 구합니다.



이제 평균가속도를 구합니다.



이 역시 정답에서는 +2 입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



어떤 초음속 전투기의 빠르기가 시속 1980 km 라 한다. 조종사가 눈을 한 번 깜박이는 동안 전투기가 날아간 거리는 얼마인가? 단, 조종사가 눈을 깜박일 때 눈을 감고 있는 시간을 0.1 초라고 가정하라.


일단 시속을 초속으로 변환합니다.



초속을 알았으니 0.1 초만큼 간 거리는 다음과 같습니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



다음 그림은 수평 방향으로 던진 물체의 위치를 어떤 단위 시간 간격으로 측정한 기록이다.


( a ) 각 시간 구간의 평균속도 벡터를 그림에 화살표로 나타내라.


( b ) ( a ) 에서 얻은 평균속도 벡터를 각 구간 시작점 시간의 순간속도라 하자. 이때 매시간 구간의 평균가속도 벡터를 그림에 화살표로 나타내라.



( a )



( b )


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



낮은 궤도의 인공위성이 90 분에 지구를 한 바퀴 돈다고 한다. 지구 반지름을 6400 km 라 할 때, 인공위성 빠르기를 시속과 초속으로 나타내라.


낮은 궤도라고 이야기하는 것은 지구 반지름과 인공위성의 높이를 거의 유사하게 취급하겠다는 의미라고 보입니다.


그러므로 인공위성의 궤도가 원이라는 가정하에서, 그 둘레 D 는 다음과 같습니다.



속력은 [이동거리/시간] 이므로 분속 V 는 다음과 같습니다.



시간의 단위를 바꾸면 속력은 각각 다음과 같습니다.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



인간의 몸을 한 변의 길이가 1/2 m 인 정육면체라고 보면, 인간의 몸은 몇 개의 원자로 이루어져 있는가? 단, 원자를 한 변의 길이가 10-10 m 인 정육면체로 취급한다.



주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



2-12


정지한 상태에서 일정한 가속도 a 로 운동하는 경우, 거리 x 까지 이동했을 때의 속도를 v2 = 2ax 로 나타낼 수 있음을 보여라.


정지한 상태에서의로 등가속도 운동을 할 때 시간과 속도와의 관계를 그래프로 나타내면 아래와 같습니다.



일단 그래프의 기울기가 |a| 이기 때문에 시간 t 에서의 속도 v 식 1 과 같이 정의됩니다. 여기에서 식을 단순화하기 위해서 가속도 벡터 a 의 크기인 |a| 를 a 로 나타냅니다( 부연 : 볼드체는 벡터입니다 ).


식 1.


그래프의 면적은 이동거리를 나타내므로 이동거리 x 는 식 2 와 같이 정의됩니다.


식 2.


이 식을 t 에 대해 정리하면 식 3 과 같습니다.


식 3.


식 3 의 t 값을 식 1 에 대입하면 식 4 가 나옵니다.


식 4.


2-13


처음 속도 v0 으로 미끄러지던 썰매가 일정한 가속도 크기 |a0| 로 멈췄다. 멈출때까지 이동한 거리가  임을 보여라.


이 상황을 그래프로 그려 보면 2-12 의 그래프와 반대가 됩니다. 



하지만 여전히 아래 면적이 이동거리입니다. 그렇다고 하면 2-12 에서 유도한 식들에다가 v0a0 를 할당하면 동일한 결과를 산출할 것입니다.


식 4 를 변형하면 식 5 가 나옵니다.


식 5.

식 5 에  v0 와 |a0| 를 할당하면 다음과 같습니다.


주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



2-10


다음 그림은 직선 운동에서 점점 느리게 가는 경우를 나타낸 위치 자료다.



( a ) 각 시간 구간의 속도벡터 방향과 속도벡터의 상대적 크기를 그림에 나타내라.


( b ) 이 운동에서 가속도 방향은 어느 방향인가?


( a )

딱히 "평균속도" 나 "평균가속도" 같은 단서가 붙지 않았기 때문에 두 위치를 연결한 것이 속도벡터이고 그것이 크기를 나타냅니다.



( b )


오른쪽으로 갈수록 속도가 줄어들고 있기 때문에 가속도는 왼쪽방향으로 적용되고 있습니다.


2-11


왼쪽( - ) 방향으로 운동하는 물체의 빠르기가 점점 빨라질 때 평균가속도는 어떤 방향( 부호 )인가?


왼쪽 방향으로 운동하는 물체를 더욱 빠르게 만들기 위해서는 왼쪽으로 가속도가 주어져야 합니다. 그러므로 평균가속도의 방향은 왼쪽( - ) 입니다.

주의 : 답이 틀릴 수도 있습니다. 그냥 정리하는 용도로 올립니다. 혹시라도 도움이 필요한 분이 있다면 도움이 되었으면 좋겠네요.

경고 : 숙제하려고 베끼는 데 사용하지 마십시오. 본인의 미래를 망칠 뿐입니다. 나중에 저를 원망하지 마세요.

부탁 : 문제 풀이가 잘못되었으면 지적해 주셨으면 좋겠습니다.



일정한 빠르기로 원운동을 하는 물체가 있다. 이 경우 물체가 원을 한 바퀴 도는 데 걸리는 시간을 T 라고 하고, 빠르기를 v0 라고 하자. 시계 방향으로 원운동을 하는 물체의 처음 위치를 A 라고 할 때, 그 위치에서의 속도는 접선 방향인 동쪽이 된다. 그리고 시간 T / 4 가 지난 후의 위치 B 에서의 속도는 남쪽을 향한다.


( a ) T / 4 구간에서 속도벡터 변화량 방향, 즉 평균가속도 방향은 어느 방향인가?


( b ) T / 4 구간에서 평균 가속도의 크기가  임을 보여라.



( a )


B 에서의 속도를 v1 이라고 할 때, 구간에서의 평균 속도의 방향인 Δv v1 - v0 입니다.



즉, 평속 속도 방향은 남서쪽을 향합니다.


( b )


일정 구간에서 평균가속도의 크기는 다음과 같습니다.




일정한 빠르기로 원운동을 하고 있기에 v0 의 속력과 v1 의 속력은 동일합니다. 그러므로 피타고라스 정리와 닮은꼴 삼각형의 성질을 이용하면 빗변의 길이를 구할 수 있습니다.√



그림에서 bold 체이면 벡터이고 그렇지 않으면 스칼라라는 점에 주의해 주시기 바랍니다. 그러므로 그림에서 |v0| = v0 입니다.


이제 평균가속도 구하는 식에 값을 대입합니다.



+ Recent posts